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Abstract

A total dominator coloring of a graph is a proper coloring where, for every vertex v, there
is a color c such that v is adjacent to all the vertices of color c. In this case, we say the vertex
v totally dominates the color c. The minimum number of colors for which a total dominator
coloring exists is called the total dominator chromatic number of a graph. In this literature
project we will discuss total dominator chromatic numbers of paths and cycles, along with a
few other graphs.

1. Introduction

Domination in graphs has long been of interest in graph theory. An early example of domination
concerned the question of determining how many chess pieces of a certain type (say, knights) are
needed so that each location on the board is under attack. Our own initial interest in total dominator
colorings was peaked by some apparent inconsistencies in the literature, and a desire to sort them
out. There are numerous claims in the literature involving the total dominator chromatic numbers
for cycles and paths, and even some confusion about the origins of the definitions of total dominator
colorings and total dominator chromatic number. In [5], Vikayalekshmi stated the definition at least
as early as 2012, and in [3], Kazemi appears to reintroduce the same concept in 2014. The definitions
and results may be independent, as far as we can tell from our research. However, the exposition in
[3] appears to contain a number of erroneous claims and proofs - counter-examples to which can be
found in [2], [4], and [6].

In this paper, our aim is simply to work through the various results appearing in [2], [4], and
[6]; in doing so, we will present formulas for the total dominator chromatic number of cycles and
paths. Although we found number of small typos and fixable mistakes, the articles by Vijayalekshmi,
appear to have the earliest and most correct proofs and results about cycles and paths. Henning
also has an essentially correct proof for paths in [2], although there appears to be an incorrect value
in one of the base cases when n = 18. (The other implied values turn out to be correct, but the
minimality of the given coloring might not be guaranteed.)

2. Basic Definitions and Lemmas

Throughout this discussion G = (V,E) will denote an undirected simple graph with vertex set
V , edge set E, and no isolated vertices. We will use mostly standard definitions and notation for
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graphs, consistent with [1].

Definition 2.1. For any positive integer n, the path Pn is the graph with vertex set [n] and edge
set E = {{i, j} ⊆ [n] : |i− j| = 1}. For n ≥ 3, the cycle Cn is the graph with vertex set [n] and edge
set E = {{i, j} ⊆ [n] : i ≡ j + 1 (mod n)}.

1 2 3 4 5

. . .

n− 2 n− 1 n

Figure 1: The path Pn.
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Figure 2: The cycle Cn

Definition 2.2. The neighbor set N(v) of a vertex v ∈ V is the set of vertices in x ∈ V that are
adjacent to v. We will also write x ∼ v when x and v are adjacent, i.e. when {x, v} ∈ E.
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Figure 3: The vertices in N(v) are shown in gray, and |N(v)| = 8.
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Definition 2.3. A coloring of a graph is an assignment of colors to the vertices. A coloring is
proper if adjacent vertices are assigned different colors. The chromatic number χ(G) is the minimum
number of colors in any proper coloring of a graph G. Given a coloring we say a vertex v totally
dominates a color c if all the vertices of color c are contained in N(v). We say it totally dominates
a vertex if it totally dominates the color of that vertex.

Definition 2.4. A total dominating set, or td-set, is a subset S of the vertex set V such that every
vertex in V is adjacent to some vertex in S. The total domination number γtd(G) is the minimum
cardinality of all total dominating sets of a graph G.

Definition 2.5. A total dominator coloring, or td- td-coloring is a proper coloring of the vertex set
V such that for every vertex v ∈ V , the neighbor set N(v) contains some color class as a subset.
Equivalently, for every v ∈ V there is some color c such that v is adjacent to every vertex of color
c. The total dominator chromatic number χtd(G) is the minimum number of colors in any total
dominator coloring of a graph G.

Note that any graph with isolated vertices cannot have a total dominating set, nor can it have
a total dominator coloring, hence we make a global assumption that our graphs have no isolated
vertices. The following observation appears in Henning [2, pg. 956] without proof.

Lemma 2.6. [2, pg. 956] For n ≥ 2

γtd(Cn) = γtd(Pn) =


n
2 if n ≡ 0 (mod 4),
n+2
2 if n ≡ 2 (mod 4),

n+1
2 otherwise.

Alternatively, this can be written as

γtd(Cn) = γtd(Pn) =
⌊n

2

⌋
+
⌈n

4

⌉
−
⌊n

4

⌋
.

Proof. We will show the proof for paths, and the proof for cycles follows by a similar argument.
It can be checked by brute force that

γtd(Cn) = γtd(Pn) =

{
2 if n = 2, 3, 4
3 if n = 5,

and minimum td-sets are shown below in gray.

1 2

1 2 3

1 2 3 4

1 2 3 4 5

Figure 4: Base cases for Pn

We can construct total dominating sets that meet the desired bound by taking all vertices congruent
to 2 and 3 (mod 4), and less than n− r, where n ≡ r (mod 4) and r ∈ {2, 3, 4, 5}, then adding to
our set the gray vertices for i > n− r as shown in the following figure.
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1 2 3 4 5

. . .

n− 5 n− 4 n− 3 n− 2 n− 1 n

n ≡ 2 (mod 4)

1 2 3 4 5

. . .

n− 6 n− 5 n− 4 n− 3 n− 2 n− 1 n

n ≡ 3 (mod 4)

1 2 3 4 5

. . .

n− 7 n− 6 n− 5 n− 4 n− 3 n− 2 n− 1 n

n ≡ 4 (mod 4)

1 2 3 4 5

. . .

n− 8 n− 7 n− 6 n− 5 n− 4 n− 3 n− 2 n− 1 n

n ≡ 5 (mod 4)

Figure 5: Inductive steps. The diamond shaped vertex indicates the last vertex congruent to 0
(mod 4) that follows the standard pattern described above.

(Notice, the pattern of the total dominating set after the diamond vertex matches our base cases.)

To see that these dominating sets are minimum size, we proceed by induction. Suppose γtd(Pn) = m.
It suffices to show that γtd(Pn+4) = m + 2. By the above construction, we have that γtd(Pn+4) ≤
m+ 2. Towards a contradiction, suppose we have a td-set of Pn+4 of size at most m+ 1. Looking at
the vertices n, n+ 1, n+ 2, n+ 3, n+ 4, we know that n+ 4 can only be totally dominated by n+ 3,
and n+ 3 must be totally dominated by either n+ 2 or n+ 4.

If n is not totally dominated by n + 1, then the induced subgraph on the vertices [n] is totally
dominated by the set S ∩ [n], which has size at most m + 1 − 2 = m − 1, contradicting that
γtd(Pn) = m.
If n is totally dominated by n+ 1, the set (S ∩ [n])∪ {n− 1} is a td-set of the subgraph induced by
the set [n]. Since n+ 1, n+ 3, and at least one of n+ 2 or n+ 4 are in S, this means

|(S ∩ [n]) ∪ {n− 1}| ≤ m+ 1− 3 + 1 = m− 1,

again contradicting that γtd(Pn) = m. �

We now present a result first presented by Vijayalekshmi in [5]. Henning in [2, pg. 958] presents a
proof, and attributes a similar statement to Kazemi [3].

Lemma 2.7. [2, pg. 958] For any graph G with no isolated vertices,

max{χ(G), γtd(G)} ≤ χtd(G) ≤ χ(G) + γtd(G).

Proof. Take any total dominator coloring of G. This is a proper coloring, and if we take one vertex
from each color class, that will be a total dominating set. This gives us the first inequality.

Take a proper coloring of G with color set C, where |C| = χ(G). Then take a minimal total
dominating set S, hence of size γtd(G). Color each vertex in S with its own new unique color not in
C. This is a td-coloring with exactly χ(G) + γtd(G) colors, giving us our second inequality.
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�

Definition 2.8. The wheel graph with n+ 1 vertices, notated by Wn, is the graph with vertex set
[n] ∪ {c}, and edge set {{i, j} ⊆ [n] : i+ 1 ≡ j (mod n)} ∪ {{i, c} : i ∈ [n]}.

c

1

2

3

4

5

6

7

8

Figure 6: Wheel graph W8.

Corollary 2.9. [3, pg.62] For n ≥ 2,

χtd(Wn) =

{
3 if n is even,
4 if n is odd.

Proof. It is easy to see that χ(G) is 3 when n is even and 4 when n is odd. So by Lemma 2.7, if n

is even, we have max{3, 2} ≤ χtd(Wn) ≤ 2 + 3. If n is odd, we have max{4, 2} ≤ χtd(Wn) ≤ 2 + 4.
However, since vertex c is adjacent to all vertices, it has a unique color in any proper coloring, and
hence totally dominates every color other than its own. Any other vertex totally dominates the color
class of c, so any proper coloring is a td-coloring. Our result follows.

�
Of much interest to us is the upper bound for paths given by Lemma 2.7.

Corollary 2.10. [2, pg. 958] For n ≥ 2,

max{2, γtd(Pn)} ≤ χtd(Pn) ≤ γtd(Pn) + 2.

Or more specifically,
max{2, n2 } ≤ χtd(Pn) ≤ n

2 + 2, if n ≡ 0 (mod 4)
max{2, n+2

2 } ≤ χtd(Pn) ≤ n+2
2 + 2, if n ≡ 2 (mod 4)

max{2, n+1
2 } ≤ χtd(Pn) ≤ n+1

2 + 2, if n ≡ 1 or 3 (mod 4) �

In particular this shows that χtd(Pn) ∈ {γtd(Pn), γtd(Pn) + 1, γtd(Pn) + 2} for all n ≥ 2.

3. Paths and the case of n = 18

Both Henning [2] and Vijayalekshmi [6] give the following values of χtd(Pn) for small n. We will
state these without proof because they are easy, but quite tedious to check.

Lemma 3.1. [2, pg. 972] For 2 ≤ n ≤ 15,
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χtd(Pn) =

 γtd(Pn) for n ∈ {2, 3, 6},
γtd(Pn) + 1 for n ∈ {4, 5, 7, 9, 10, 11, 14},
γtd(Pn) + 2 for n ∈ {8, 12, 13, 15}.

For a base case of one of our main results, we will use n = 22 and we will need to know that

χtd(P22) = γtd(P22) + 2 = 14.

Henning used n = 18 in his base case, because he assumed that χtd(P18) = γtd(P18) + 2 = 12.
However, this value for χtd(P18) is incorrect, since the following td-coloring with 11 colors is a coun-
terexample.

r 1 2 r 3 4 3 r 5 6 r 7 8 7 r 9 10 r

In this figure, the label below a vertex is the color of that vertex. The color r (shown in red) is called
a non-dominated color class, because no vertex totally dominates that color class. In this example,
there is only one non-dominated color.

A non-repeated color is a color whose color class is a singleton. Or, in other words, a vertex has
a non-repeated color if and only if it is the only vertex with that color. In the example above, colors
1, 2, 4, 5, 6, 8, 9, 10 are the only non-repeated colors.

The next result shows that χtd(P18) = 11, which completes our consideration of this counterex-
ample to [2, prop. 20].

Proposition 3.2. For the path P18 we have χtd(P18) = γtd(P18) + 1 = 11.

Proof. The td-coloring shown above also shows that

χtd(P18) ≤ γtd(P18) + 1 = 11.

Suppose we had a td-coloring of P18 with 10 colors. Since vertices 1 and 18 must totally dominate
some color, vertices 2 and 17 each get non-repeated colors. Now if 3 had a repeated color, then the
restriction of the coloring to the subgraph induced by [4, 18] = {4, 5, 6, . . . , 18} would be a td-coloring
with at most 9 colors, but by Lemma 3.1, we have that χtd(P15) = γtd(P15) + 2 = 10. So vertex
3, and similarly vertex 16, must have non-repeated colors. So this means the coloring restricted to
the induced subgraph on [2, 17] would be a td-coloring. Suppose vertices 1 and 18 have different
colors. Since selecting one vertex from each color class of a td-coloring gives us a td-set, selecting
{1, 18, 2, 17, 3, 16} and then one more vertex from each of the rest of the color classes gives us a
td-set with 10 elements, since there are 10 colors. But since 2, 3, 16, 17 are all totally dominated
and also totally dominate 1 and 18, removing 1 and 18 from this total dominating set leaves us with
another total dominating set, with 8 elements. But γtd(P18) = 10. So vertices 1 and 18 must be the
same color; call it r. This means [4, 15] is colored with at most 6 colors, including the repeated r.
However, the sets {4, 6}, {5, 7}, {8, 10}, {9, 11}, {12, 14},{13, 15} are each neighborhoods of some
vertex, so they must contain a color class. This cannot be color r, since vertices 1 and 18 are colored
r. Therefore χtd(P18) = γtd(P18) + 1 = 11. �

Replacing P18 by P22 in our base case will allow us to find the complete list of values for χtd(Pn)
for all n ≥ 2, once we find such minimal td-colorings for n = 8, 13, 15, 22, so we need the following
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result.

Proposition 3.3. [6, pg. 92] For the path P22 we have χtd(P22) = γtd(P22) + 2 = 14.

Proof. By Corollary 2.10 and Lemma 2.6 it suffices to show χtd(P22) ≥ 14. Suppose χtd(P22) ≤ 13.
Just like the argument for P18 above, we can say the following.

(i) Vertices 2,3, 20 and 21 all have non-repeated colors.

(ii) Vertices 1 and 22 have the same color, say r.

If 7 is given a repeated color, then since {4, 6} and {5, 7} must contain a color class, [1, 7] must
contain at least 4 color classes. But 7 having a repeated color also means the coloring restricted to
[8, 22] is a td-coloring of P15 with at, most 13-4=9 colors, contradicting Lemma 3.1.

(iii) Vertex 7 has a non-repeated color.

From (i) and (ii), we get that the coloring restricted to [4,19] uses at most 9 colors, which includes r.
Since each of the sets {4, 6}, {5, 7}, {8, 10}, {9, 11}, {12, 14},{13, 15} {16, 18}, and {17, 19}, contains
a color class, if any of these was not a color class, then one vertex in it must be a non-repeated color
and the other must be color r. This means

(iv) Vertex 5 has color r, which in turn implies (v).

(v) The set {4, 6} is a color class.

This also tells us that 7 must totally dominate 8, which implies (vi).

(vi) Vertex 8 has a non-repeated color.

By symmetry, we have (vii) - (ix).

(vii) Vertices 21, 20, 16, and 15 have non-repeated colors.

(viii) The set {17, 19} is a color class.

(ix) Vertex 18 is colored r.

Putting this all together, we have that the coloring restricted to [9, 14] must be colored with at
most 3 colors including r. But {9, 11}, {10, 12} must contain color classes, so 13 and 14 must both
be colored r, contradicting that this is a proper coloring. �

Vijayalekshmi [6] shows that χtd(Pn) = γtd(Pn) + 2 for n = 8, 13, and 15, but the argument is
the same as for 22, only easier, so we omit it here.

Lemma 3.4. [6, pg. 91] For n ≥ 2, χtd(Pn+4) ≥ χtd(Pn) + 2

Proof. The base cases of n < 6 can be seen from Lemma 3.1. Now take a minimal td-coloring
of Pn+4. If n+ 1 has a repeated color, then the coloring restricted to the induced subgraph on the
vertices [n], is a td-coloring, and n+ 1, n+ 2, n+ 3, and n+ 4 must contain two color classes since
only n + 3 is totally dominated by n + 4 and {n + 2, n + 4} contains a color class. So our desired
result follows in this case. Similarly the result follows if vertex 4 is repeated, so we will assume 4
and n+ 1 are not repeated. But then the coloring restricted to [3, n+ 2] is a td-coloring, and since
2 and n+ 3 have non-repeated colors, we again have χtd(Pn+4) ≥ χtd(Pn) + 2. �

Corollary 3.5. [6, pg. 91] If for some n, χtd(Pn) = γtd(Pn) + 2 , then χtd(Pm) = γtd(Pm) + 2, for
all m > n such that m ≡ n (mod 4).

Proof. By Lemma 3.4 χtd(Pn+4) ≥ χtd(Pn) + 2 = γtd(Pn) + 2 + 2. By Lemma 2.6, γtd(Pn) + 2 =
γtd(Pn+4), so χtd(Pn+4) = γtd(Pn+4) + 2 , and our result follows by Corollary 2.10 and induction.
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�
We will use this fact later, and we note the following consequence.

Theorem 3.6. For n ≥ 19,

χtd(Pn) =


n
2 + 2 if n ≡ 0 (mod 4),
n+2
2 + 2 if n ≡ 2 (mod 4),

n+1
2 + 2 otherwise.

Alternatively, this can also be written as,

χtd(Pn) =
⌊n

2

⌋
+
⌈n

4

⌉
−
⌊n

4

⌋
+ 2.

Lemma 3.1, Theorem 3.6, and Proposition 3.2, taken together, give us the values of χtd(Pn) for
all n ≥ 2.

4. Cycles

We need a few more results about paths before moving on to cycles.

Theorem 4.1. [6, pg. 94] For n ≥ 2, if Pn has a minimal td-coloring with at least two non-
dominated color classes, then Pn+4 has a minimal td-coloring with at least two non-dominated color
classes.

Proof. Let the color classes of such a minimal td-coloring of Pn be C1, C2 . . . Cm. And let C1 and
C2 be non-dominated color classes. Then considering Pn as a subgraph of Pn+4, we take the same
color classes but with C1 replaced by C1 ∪ {n+ 1}, C2 replaced by C2 ∪ {n+ 4}, and the two new
color classes {n + 2} and {n + 3}. This is clearly still a total dominator coloring, and meets the
bound of Corollary 3.4 so it is minimal. �

Shown below are the minimal td-colorings with two non-dominated colors, of our base cases.

r 1 2 r g 3 4 g

n=8

r 1 2 g r 3 4 5 g r 6 7 g

n=13

r 1 2 g r b 3 4 5 b g r 6 7 g

n=15

r 1 2 g r 3 4 g b 5 b y 6 y r 7 8 g r 9 10 g

n=22

From these colorings, Corollary 3.5, and Theorem 4.1, we have the following results.

Corollary 4.2. [6, pg. 94] For all n ≥ 8, if χtd(Pn) = γtd(Pn)+2, then Pn has a minimal td-coloring
with end vertices that are a different color. �
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Corollary 4.3. [6, pg. 95] For all n ≥ 8, if χtd(Pn) = γtd(Pn)+2, then Pn has a minimal td-coloring
with at least two non-dominated color classes �

If there is a minimum td-coloring of Pn where the end vertices have different colors we can connect
the ends to get a td-coloring of Cn. So, by the corollaries above, we have the following result.

Lemma 4.4. For n ≥ 8, if χtd(Pn) = γtd(Pn) + 2, then χtd(Cn) ≤ χtd(Pn). �

Now we will present a lemma and proof from [4].

Lemma 4.5. [6, pg. 93] For n ≥ 5, if Cn has a minimal td-coloring in which there exists a color
class of the form N(x), (i.e. that is a neighborhood of a vertex), where x has a non-repeated color,
or there is no color class of the form N(x), then χtd(Pn) ≤ χtd(Cn).

Proof. First suppose Cn has a minimal td-coloring in which there exists a color class of the form
N(x), and x has a non-repeated color. Without loss of generality, assume x is vertex 2, with non-
repeated color c1, and N(x) = {1, 3} is the color class with color c2. Vertex 1 has a repeated color
so n must totally dominate vertex n − 1, since n ≥ 5. So our coloring restricted to the path from
vertex 1 to n is a td-coloring, so χtd(Pn) ≤ χtd(Cn) in this case.

Now suppose Cn has a minimal td-coloring where there is no color class of the form N(x). This
implies that for any vertex with non-repeated color, it must have a neighbor with a non-repeated
color. [In fact every vertex x has a neighbor with a non-repeated color since, otherwise, it must
totally dominate one of those color classes and hence that color class must be N(x), contradicting
our assumption.]
There are three subcases in this case.
Subcase 1 There are no repeated colors. In this case, every vertex totally dominates each of its
neighbors. So removing an edge uv, u still totally dominates its other neighbor u1, and similarly v
for its other neighbor v1. So this is a td-coloring of Pn.
Subcase 2 There are two adjacent vertices u,v with repeated colors. Then the vertex on the other
side of u, u1, and on the other side of v, v1, must have non-repeated colors. So removal of the edge
uv would give a td-coloring of Pn.
Subcase 3 The final subcase is that there are no two adjacent vertices that are both repeated and
there are adjacent vertices u, v with one of them having a repeated color and the other having non
repeated color. Without loss of generality say u is repeated and v is non-repeated. Again call the
vertex on the other side of u, u1, and on the other side of v, v1. Vertex u1 can’t be repeated by
assumption of this subcase, and v1 is non-repeated since it must be totally dominated by v. Again
removing edge uv will give a td-coloring of Pn.

So in all these cases we have our result χtd(Pn) ≤ χtd(Cn).
�

Vijayalekshmi makes the following observations.

χtd(Cn) =

 χtd(Pn)− 1 for n = 4,
χtd(Pn) for n ∈ {5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17},
χtd(Pn) + 1 for n ∈ {3, 11, 18}.

We will show, just as Vijayalekshmi does in [4], that for all n ≥ 19, χtd(Cn) = χtd(Pn). More
specifically, we will show that if χtd(Pn) = γtd(Pn) + 2, then χtd(Cm) = χtd(Pm) for all m > n
and m ≡ n (mod 4), which will give us the values of all remaining χtd(Cm) not in the values given
above. First we need one more base case.
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Theorem 4.6. [4, pg. 94] χtd(C22) = χtd(P22) = 14

Proof. By Lemma 4.4 we have χtd(C22) ≤ χtd(P22). Suppose χtd(C22) < χtd(P22) = 14. Then by
the contrapositve of Lemma 4.5, there is a minimal td-coloring in which there is a color class of the
form N(x) where x has a repeated color, say color c2. Without loss of generality, say x is vertex
2. So vertices 1 and 3 are the same color, say c1,3. First we will assume the color class of c2 is not
N(1) or N(3). In this case we can see that since c1,3 is repeated, vertex 4 and 22 have non-repeated
colors, say c4 and c22 respectively. Since c1,3 is repeated, 5 and 21 must also get non repeated colors,
say c5 and c21.

c2

c4

c5

c22c21

12

17
1

611 10 9 8 7

5

4

3

2

2221201918

16

15

14

13

c1,3

The coloring restricted to the induced subgraph on the vertices [6, 20], is a proper coloring with
8 colors, including c2 (it is not necessarily a td-coloring). The seven sets {6, 8}, {7, 9}, {10, 12},
{11, 13}, {14, 16}, {15, 17}, and {18, 20}, must each contain a color class, since they are neighbor
sets, so 19 must get color c2, and by symmetry 7 also gets color c2. This in turn means 9 and
17 must have non-repeated colors, and that {6, 8} and {18, 20} are color classes. This means that
10 and 16 have non-repeated colors. So we have that the vertices [11,15] are colored with 2 colors
including c2, but that is not possible since {11, 13} and {12, 14}, must contain color classes.

The case where the color class of vertex 2 is N(1) or, N(3), without loss of generality say N(3).
Call its color c2,4, and notice it can’t be used elsewhere in the graph since vertex 3 must totally
dominate it. Similar to the argument before, we can see that vertices 5, 6, 22, and 21 must have
non-repeated colors. So now the vertices [7, 20], are colored with 7 colors, none of which can be the
colors used to color vertices [21, 6]. However that means the sets {7, 9}, {8, 10}, {11, 13}, {12, 14},
{15, 17}, and {16, 18}, must be color classes. But that means vertices 19 and 20 get the same color,
which is impossible. Therefore we have χtd(C22) = χtd(P22) = 14. �

Theorem 4.7. [4, pg. 95] For n ≥ 5, If χtd(Pn) = γtd(Pn) + 2 , then χtd(Cm) = χtd(Pm), for all
m > n such that m ≡ n (mod 4)

Proof. By Lemmas 4.4 and 4.5 and the values we have found, it suffices to show that χtd(Pm) ≤
χtd(Cm) when there is a color class of the form N(x) where x is repeated. We will call the vertex
x, vertex 2. We proceed by induction on n. The base cases of interest are when n = 8, 13, 15,
and 22 which are routine to check. Now suppose the result is true for n − 4. Say vertex 2 has
color c2, and vertices 1 and 3 have color c1,3. Since these are repeated colors, vertices 4, 5, n, and
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n− 1 must have non-repeated colors. We can remove vertices n− 1, 1, 2, and 3, and add the edge
{4, n − 1}, and this will give us a td-coloring of Cn−4. So by our inductive hypothesis, we have
χtd(Cn) ≥ χtd(Cn−4) + 2 = χtd(Pn−4) + 2 = χtd(Pn), where the last equality is by Corollary 3.5.

c2 c1,3

cn−1 cn

c4c5

6

1

35

2

nn− 1n− 2

d

4

The dotted curve on the right in the figure above represents that vertex 1 and 3 are both colored
c1,3. The dashed edge from 4 to n− 1 is the edge that we add after removing vertices n, 1, 2, 3. �

This completes our list of values for χtd(Pn) for all n ≥ 2 and χtd(Cn) for all n ≥ 3.
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